Use this set during your Farm Theme to set up a fun farm-themed obstacle course. Your preschoolers will enjoy exploring farm Chores while working on physical development at the same time! This printable pack includes a farm chores checklist. a farm chores poster, and farm chore cards-all featuring real photo images!
Farm Lessons 17 Pdf
FINALLY, I got to the store to get the supplies for my Garden in the Glove lesson plan. The Garden in the Glove lesson plan is one of my favorite farm lesson activities. I think it was one of the first activities I ever did in a classroom; decades ago when I was in high school.
Thank you for reading! Make sure to subscribe to our blog. Each week (when it is not -40 degrees out) I post a free teacher lesson and activity to help bring farming, food and agriculture to the classroom.
One major factor that has been reported to contribute to chronic poverty and malnutrition in rural Haiti is soil infertility. There has been no systematic review of past and present soil interventions in Haiti that could provide lessons for future aid efforts. We review the intrinsic factors that contribute to soil infertility in modern Haiti, along with indigenous pre-Columbian soil interventions and modern soil interventions, including farmer-derived interventions and interventions by the Haitian government and Haitian non-governmental organizations (NGOs), bilateral and multilateral agencies, foreign NGOs, and the foreign private sector. We review how agricultural soil degradation in modern Haiti is exacerbated by topology, soil type, and rainfall distribution, along with non-sustainable farming practices and poverty. Unfortunately, an ancient strategy used by the indigenous Taino people to prevent soil erosion on hillsides, namely, the practice of building conuco mounds, appears to have been forgotten. Nevertheless, modern Haitian farmers and grassroots NGOs have developed methods to reduce soil degradation. However, it appears that most foreign NGOs are not focused on agriculture, let alone soil fertility issues, despite agriculture being the major source of livelihood in rural Haiti. In terms of the types of soil interventions, major emphasis has been placed on reforestation (including fruit trees for export markets), livestock improvement, and hillside erosion control. For many of these interventions, there is limited independent, peer-reviewed data as to their success or long-term effect. By comparing soil interventions in Haiti with interventions that have been effective globally, we have identified several intervention gaps. The most important soil intervention gaps in Haiti include inadequate farmer training (extension) in soil management, and lack of technical support for legume and cover crops and for livestock pastures. We discuss the policy failures of different stakeholders working in Haiti, potential remedies, their costs, and likely long-term effects. We hope that this review will inform future efforts to improve soil fertility in Haiti.
Haitian smallholders, who cultivate two hectares of land or less, have experienced a prolonged history of food insecurity, largely attributed to soil infertility and soil erosion [6]. In 1999, soil erosion in Haiti was estimated at 36 million tonnes, or 1,319 tonnes/km2/year [7, 8]; by contrast, the UK lost topsoil at a rate of 9 tonnes/km2/year in 2004 [7, 9]. There are intrinsic biophysical factors and anthropogenic factors that currently contribute to soil infertility and erosion in Haiti, including land gradient, rainfall patterns, soil types, and the unsustainable farming practices of impoverished smallholders [10, 11].
In addition to the above biophysical factors, soil infertility and erosion in Haiti have been accelerated by human activity, which has caused nutrient demand on farms to exceed the natural regenerative ability of the soils. In particular, the demand for fuel wood has perpetuated a process of deforestation, soil erosion, diminished crop yields, and subsequent food insecurity. With an average rural population density of 300 people per km2, and 85% of the total population using fuel wood as a source of household energy (3.3 million m3 per annum), the Haitian countryside has been left with only 3% forest cover [18]. It is estimated that charcoal production from wood is conducted on 21% of all farms [19], and a 2013 report suggests that this trend is on the rise [20]. As a secondary cause, from 1997 to 2003, the average farm plot size grew from 1.8 to 2.7 ha, which was caused by farmers clearing their land to increase the cultivation area in order to compensate for low crop yields on already depleted soils [18]. These findings demonstrate that forestry and farming are interdependent in Haiti. Deforestation causes soils to be exposed to wind and rainfall, which then accelerate the process of soil erosion [5, 13].
Plants take up only a portion of added fertilizers, and the remainder can be leached or volatilized if they are not used as building blocks for living organisms in the soil that contribute to soil organic matter (SOM) [13, 24]. SOM also consists of the partially decomposed residues of crops and any added manure that is rich in undigested plant feed such as straw [13]. Soils that are high in SOM feed microbes that are beneficial to crops (for example, mycorrhizal fungi that extend the root network). SOM can also benefit crops by providing a hospitable soil structure, and thereby improve the nutrient availability to crops, the drainage on clay soils (to reduce water-logging), and the water-holding capacity of sandy or sloping soils (to retain rainwater and prevent erosion) [13]. As SOM becomes diminished, greater quantities of synthetic fertilizers must be added, as their effectiveness is reduced by leaching and volatilization [13, 24]. Unsustainable farming practices in Haiti that contribute to low SOM include removal of crop residues from the field, excessive tillage, lack of mulching, and lack of manuring [18]. A potential contributing factor to the lack of farmer attention paid to SOM may be insecure land ownership and lack of formal land ownership, as building of SOM is a long-term process and requires considerable investment over time. In Haiti, formal land ownership often exists on inter-personal or customary terms within a community, as opposed to formally written agreements via state systems [25, 26]. Based on five separate large-scale surveys of land ownership in Haiti, researchers have estimated that farmer ownership of land, both formal and informal, ranges between 53% and 65% [27].
Several effective erosion-control strategies have been used around the world, based on the principles of conservation farming (CF) [30]. For example, rock-wall terraces have been effective in trapping sediment and blocking run-off, but are labor-intensive and cost-intensive to build and involve additional long-term repair costs [21, 31]. Unlike rock barriers, living erosion barriers repair themselves naturally by re-growing. Living erosion barriers can include hedgerows of trees, shrubs, and grasses on slopes. An example of a holistic living barrier is vetiver (Chrysopogon zizanioides), a non-invasive grass grown as a hedgerow that acts as a barrier to the forces of soil and water run-off, contributes to terracing, and can be used as a mulch [32]. Other well-known strategies include tied ridges (parallel ridges with interspersed mounds in the trenches to prevent water flow), contour farming (crops planted in rows perpendicular to the slope), and no-tillage agriculture (planting by seed drilling into existing crop residue without tilling the soil) [30, 33]. A particularly effective strategy to prevent soil erosion is the use of cover crops, which carpet the soil, protecting it from exposure to rainfall within or between cropping seasons [11]. Perennial plants and trees serve a similar purpose, and alley cropping is a style of agroforestry that involves the cultivation of food crops between hedgerows of leguminous trees (see below) or shrub species [31, 34].
As illustrated in the sections below, many of the sustainable farming practices of the Taino people are absent in modern Haiti, but why? Following the arrival of Europeans, it is estimated that more than 99% of the Taino population, or 3 million people, died within a 12 year period between 1494 and 1508, leaving a population of only 60,000 Taino [58]. This was due to violence, enslavement, and lack of biological resistance to European diseases. Europeans also introduced foreign livestock species, including the fast-running pig of the Spanish meseta, which over-populated the island and disrupted conuco mounds by digging up and eating many of the starch-rich tubers growing within [58]. European colonizers subsequently transformed the island from subsistence agriculture to plantation-style sugar-cane farming, and repopulated Haiti with African slaves who had agricultural traditions different from those of the Taino [58].
Despite historical upheaval and relocation, contemporary Haitian farmers created their own strategies to prevent soil erosion. Unfortunately, our literature review (see the following sections) suggests that very few foreign-led interventions have adopted, improved upon, or scaled up these grassroots practices, and in many cases do not have any knowledge of them, suggesting a lack of true partnership with local farmers.
If sediment loss is not addressed before the run-off enters canal diversion (whether through ramp pay or some other method), some Haitian farmers trap the sediment later on in the drainage process through jardins ravine (alternatively known as clayonnage or kleonaj) [59, 60]. This is a practical, local method of floodwater harvesting, which is different from rainwater harvesting in that the strategy works to capture both water and soil sediment. Canal diversion uses plant residues to construct barriers within gullies. These barriers act much like ramp pay to build up deposits of alluvium, which then become suitable for vegetable and fruit production [60]. 2ff7e9595c
コメント